| AD-A252 414
18 Aprl sega T oo 10048 T L — @

Derivation of the Generalized,
- Average Euclidean Distance Function
for the PDI Model -

F. J. O'Brien Jr.
Combat Control Systems Department

_ DTIC

ELECTE A
JULOB81932 & B

Naval Undersea Warfare Center Division
Newport, Rhode Island

Approved for public release; distribution Is unlimited. 92_ 17543

. \ ‘\
8.7 06 o3 R




PREFACE

This work was performed under the Submarine Environment
Evaluation Database task, program element 62234N. The
sponsoring activity is the Navy Personnel Research and
Development Center, program manager J. Grossman (Code 412).

The technical reviewer for this report was P. R. Kersten
(Code 2211). :

Reviewed and Approved: 15 April 1992

Head, Combat.Co'ntrol Systenfs Department




| REPORT DOCUMENTATION PAGE peisoagingiiB

0thenng snd Mmomtamng he 65t Aesded, Sad COMPIFENG AN reviewsg the o or 1
J..u.ﬁqa..muguuqéu!lznu&i&.-&::om.d%...hu--.,;n.n.n.uu..-.éﬂﬁaﬂauu-..m 0%y ¥ Aetienon
1. AGENCY USE ONLY (Leave m 2. REPORT DATE 3. REPORT TYPE AND DAYES COV!ﬁ

15 April 1992

T ——T YY"
4. TITLE AND SUSTITLE
Derivation of the Generalized, Average Euclidean
Distance Function for the PDI Model

€ AUTHORS)

F. J. O'Brien Jr.

7. PERFORMING ORGANIZATION NAME ADDRESS(ES) 4 NUMBER

Naval Undersea Warfare Center Division
Newport, Rhode Island 02841-5047 TR 10,046

9. SPONSORING / MONITORING AGENCY NAME(S) AND ) AGENCY REPORT NUMBER

Navy Personnel Research and Development Center"
San Diego, CA 92152-6800

| 11. SUPPLEMENTARY NOTES

122. DISTRIBUTION/ AVAILABILITY STATEMENT ’ 12b. DISTRIBUTION CODE

Approved for public. release; distribution is unlimited.

[13. ABSTRACT (Maximum 200 words)

This report derives distance functions that form the basis for the
Population Density Index (PDI) model, which is a three-parameter square-root
model for measuring discrete spatial density in finite populations.. The PDI
and its methods have been applied to facilities layout methodologies in
submarine enviromments at the Naval Undersea Warfare Center Division, Newport, RI,
resulting in several U.S. patent applications. The emphasis here is on the
"micro-population” model in which the linear units are "feet."” The derivations
relate Cartesian rectangular coordinate systems to uniform unit and nonunit
lattices, as well as to the nonlattice distribution. Other proofs relate to
the bounds of the calculated density measure and the density rate index called
"effective distance."” Alternative distance functions are discuseed, and examples
of the numerical calculations are provided. Also derived is the algorithm for
selecting a rectangular lattice conformal to a quadrilateral area and for calcu-
lating interpoint distance in a PDI lattice. A table of computer-generated unit
lattice average Euclidean distances for up to 10,000 density points is included.

I ——— —————————
14. SUBIECT TERMS ’ 15. NUMBER OF PAGES
Population Density Measurement ’ ‘ 33
Human Factors Engineering 16. PRICE CODE

Mathematical Models
7. ﬁcuam CLASSIFICATION [ 18. SECURITY Eﬂssmu't'ﬁ 19. StCU SSIFICA 20. ﬁhmon 5; ABSTRACT
" OF ARSTRACT

OF REPORT OF THIS PAGE
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED SAR
NSN 7340-01-280-5500 . ‘ Standard Form 298 (Rev. 2-89)

Pranenibed by ARY a8 239-18
02




TABLE OF CONTENTS

Page
LIST OF ILLUS T RATIONS ...cttiiiiieeteieerenrcesosenasecssssssssssssssassossssassssasassses i
INTRODUGCTTION ...cciitteieransececsssessssssssssssssesstocsssascssssssssssssssssssssssssnsses 1
DERIVATION OF THE DISTANCE FUNCTION........ccoceeeecnetniancaniisasssaanases 2
General Case LattiCeS . c.uceeeererieeseieeereesesescessasssssosasesnssanssssssssssssosssascnsons 2
Special €ase LattiCes......cccciiirriiiiiiiiieisiinniiiciicsiiiceeneeseneessesanneeesssananasoes 5
Generalized Distance Function in @ LattiCe.....ccceeiuriiieeeieresenccsessennsscesscccnacces 9
Generalized Distance Function in 8 NONIAHCE. . .......ccceeererrneecnscecennscsseasencesss 12
Alternative Distance MOGELS ......ooviiieiierererereerrsnsscecesosssssssnassssssssssssssssnnss 14
SELECTED PROOFS ...vvtiietiitieeasceestessssessesssesassessssssssessssssssessssaasssaansases 15
Proof That PDImin S PDIact SPDImax ......ccccuevvuieniniiienienireerncenecnnenencnns 15
PIOOES fOT Oeff.cenvereenrerrenreerecaesesssesescnsstsossearesasessnssssessssssssssssssenssssases 18
SUMM A R Y .o iiiiieiiteeecasssscsesssassssssssessesassseessssssnsessensessssssesassssnssnnsen 19
APPENDIX A: SELECTING A UNIT LATTICE AND INTERPOINT DISTANCE
PARAMETER. ....uiiitiiiitiieeteetscsasssesssessssasesassesssscssssassasssssssnsssssecssaeses A-1
Derivation of the Algorithm.......ccociiieiiiiiiiiiiiiiiiiceiiiestaiiessrassesasnesncnsceaes A-1
Numerical EXamples.......ccceiiiiiiieieiiereiettitotreicsioracaceosstncssecssssssssesnenes A6
APPENDIX B: UNIT LATTICE AVERAGE EUCLIDEAN DISTANCE
VALUES ...oiiiiiiiiiiitreeeessieiiiiiecttstssetstatamesesssssossssssasasssasasesassssssnnans B-1
BIBLIOGRAPHY.... ............................................................................. R-1
Accesion For
NTIS CRA&I )
DTIC  TAB 0
Ui.annousiced {0
Justification
BY ]
p D1 ibution |
A e
R Availabitity Coc'as
N | Dist ‘“"s“pj’;i‘;.' o




LIST OF ILLUSTRATIONS

Figure Page
1  General Case LattiCe.......ccioviiiniiiiimnuiiintiiiiiimnciniieecieessciseeesanencrasenss 3
2  Example of General Case PDIGraph.......c.ccciiiiiiiiiiniiiieiiinerncecsaceccenecnes 5
3 Special Case LAtliCe ....cccuvumiiiiiiiiiimmuiiiiiiiiiniieiniiiieeeeeetieseseeennanaees 6
4  Example of Special Case PDI Graph (Unit Lattice)........cccccovvurccrcsasccnecene 8
5  Example of Special Case PDI Graph (Commensurate Nonunit Lattice) ............. 9
6  Intuitive Justification for Third ASSUMPHON ....ccuviereirierernrieeneeeensercraennnns 16

A-1 Flowchart for Determining R X C Unit Lattice and Interpoint
Distance Parameter 8........cociuiruereiiiieiiiiiiereeeeeeeeeernereneenesneennnns A-5




) DERIVATION OF THE GENERALIZED, AVERAGE EUCLIDEAN
_ DISTANCE FUNCTION FOR THE PDI MODEL

INTRODUCTION

Research has demonstrated spatial density (or crowding) to be a significant stressor in

animal and human populations (Galle, Grove, and McPherson, 1972; Baum and Epstein, 1975).
In previous papers, the author formulated and tested a mathematical model and methodology for
measuring discrete spatial density in human populations (O'Brien (1989, 1990a, 1990b)) . The
model, called the population density index (PDI) model, was demonstrated to provide a more
accurate and flexible approach for discrete spatial density measurement than the conventional
formulation. The traditional approach to measuring human physical density involves two
parameters: the number of persons (n) and the geometric area (A) in which the persons dwell.
The equation D = n/A serves as the conceptual and computational definition for “density,”
“congestion,” “population density,” or “physical crowding,” each term used interchangeably. In
contrast, the PDI model is based on three parameters: n, A, and inter-object distance. The
derivation of the PDI model metrics is patterned on the “square-root law” of average distances
used in the physical sciences. The capability to model inter-object distance within a defined

- geometric plane is a significant enhancement to discrete spatial density measurement. In O'Brien
(1991a), the PDI model was generalized to any finite number of density points (i.c., people).

The motivation for developing the PDI formula and model was the need to be able to
measure crowding among people from variable spatial configurations such as in a typical
dynamic workplace environment. The conventional density model assumes that a static
description is adequate without taking into account the way in which people use an environment
over time.

The PDI model has been used at the Naval Undersea Warfare Center (NUWC) Division,
Newport, for density measurement (O’Brien and Kanter, 1988; Kanter and O’Brien, 1989a;
1989b) in submarine attack center concept of operations experiments (Wallin, 1987). Practical
applications of the PDI model resulting from research at NUWC have been documented for a
variety of disciplines in several U.S. patent applications (O'Brien, 1991c, 1991d, 1991e, 1991f).

The purpose of this report is to provide a more rigorous derivation of the PDI model than
currently exists. The basis of the PDI model is the distance function in Euclidean space. All of




the measures in the model are related to distance. Thus, anittemptismadetochmctaizethe
PDI distance function in R2 (two-dimensional Euclidean space).

DERIVATION OF THE DISTANCE FUNCTION

GENERAL CASE LATTICES

The notation and structure of this section is patterned on Morrey (1962, Chapter 8, “The
Definite Integral™”), where the theory of area and concept of functional uniform éominuity are
developed in detail. Also, the ideas of inner and outer areas of bounded sets and the idea of a
planar figure developed in Morrey are germane to the present development.

In the X-Y Euclidean plane (quadrant I) of figure 1, any two consecutive abscissa
(horizontal) or ordinate (vertical) points (denoted by a large dot ) are assumed to be equidistant
with interpoint spacing parameter 8. That is, the directed distances of the collinear point pairs
(P1P2) =[(xy, y/M(xic41, Yr)] and (P3P4) = [(xm, ¥;) (Xms ¥j+1)] are

PiP2 =[xy - xd =8,
¢
P3P4=b'j+1 -yj|=8,

where xy is a representative abscissa and yj is a representative ordinate; (x,, yj) > 0. Generally,
X ¥j will not be lattice (integer) points. In this report the units of the interpoint distance
parameter & for human populations are assumed to be feet (5 2 1).

The interior rectangular lattice shown in figure 1 consists of n (a nonprime number) finite
points arranged uniformly with R row (horizontal) and C column (vertical ) points such that
n=RC (n22). The selection of an RC configuration and the computation of § are explained in
appendix A.
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Figure 1. General Case Lattice
For a representative region S bounded by the nonnegative curves (see figure 1)
f,(x) =G +1)Y/C
_ ¢)
g8A(x) = jY/C, g,(x) < f,(x),
KXIRSxs k+DX/R, 0<k<R-1,05jsC-1,
the area A(3) is defined as
(k+1 JXR
A =[ A -galx,
KXR
3
= XY/RC = A,




which is seen to be a rectangle. For human populations with feet as the linear units, the
restriction will be placed on the value of A/n; viz., A 2n. When A =n, the RC rectangular or
square uniform discrete distribution is referred to as a "unit lattice”; otherwise, the homogeneous
distribution of points is called a “nonunit lattice.” The distinction will be understood in context.
Each such rectangle will be obtained by dividing the total study area n[A(8)] inton =RC
partitioned rectangles each, with area given by equation (3).

The connected density points in each of the horizontal and vertical intervals are defined
by relations (or multiple-valued discrete constant functions):
fR)=X=R-1)d +p, p>0,
)
fCO=Y=(C-1)d +q, q>0.

Equations (4) indicate that each X or Y interval consists of two components: the length of the
density points segment [(R - 1) or (C - 1)3] and an excess factor (p or q). The region outside the
perimeter of the uniform point arrangement [equal to A - (R - 1)(C - 1)8?] is required to
accommodate environmental objects (furniture, equipment, displays, etc.). Each of the CX
intervals and RY intervals is defined by the constant functions in equations (4). The interval X

. will be partitioned into R subintervals, each subpartition of which will have the length shown in
figure 1, and Y will be similarly divided and have the length shown in figure 1.

The derivation of the coordinate system for the general-case lattice will allow a precise
graph to be drawn of any uniform rectangular distribution on a rectangular Cartesian X-Y
coordinate system such that the interior RC lattice is contained within the XY exterior region.
The coordinates of the density points derived from equation (4) will be generated by

x =p2 + k-1)5, 1 Sk <R,

()
Yj=02+(G-18, 1sjsC.
Then, the coordinate system for the general case will be defined as
(®e ¥5)=[(xg, y1) (x2: Y1) s (%> ¥j} or (XR» YO))
=|(P. 9} (P q P q,,
—-[(’2", -2—), (5'1'8, -2—). ceey (E+(k- 1)8, 5'4‘0 - 1)8), asey
B+ ®-18 +c-g). | ©




The coordinate system of equation (6) applies to either a unit or nonunit lattice because it is
derived from the general case. An example of the use of equation (6) is depicted in figure 2.
The coordinates were generated from the following assumptions: n=6; R =3, C =2 (from
equation (A-4) in appendix A); A=XR Y=16x6; p/2 = 4,922 = 1(from (4)); 5 =4 (from
equation (A-5) in appendix A). Then the coordinate points are generated by xp =4 +4(k - 1);
yj=1+4( - 1). The plot points are obtained from all k x j combinations (k =1, 2, 3;j=1,2).
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Figure 2. Example of General Case PDI Graph

SPECIAL CASE LATTICES

Each density point (¢) is now assumed to be the centroid (center of mass) bounded by its
respective planar region (see figure 3). Let a representative region be called S. The area of S
can be determined by first defining the nonnegative curves as the boundaries of S:

fB(X) =G+ 15,
)
gg(x)=jd, gg(x) <fpx),

kd<sx<(k+1)d, 0SsksR-1, 0<j<C-1.

The special case of equation (7) can be derived from equation (2) by assuming that
8 =p=q=X/R=Y/C in equation (4) of the general case (i.c., proportionate commensurability
between the dimensions of the outer and inner rectangular areas).




The area of S is then found by integrating between the curves fg(x) and gg(x) in the x
interval, and applying the Fundamental Theorem of Calculus:

k+1)8

2 2
AS) = [fs(x) - gg(x)ldx=8", & 21. 6))

kb

This is intuitively the area of a square figure. The figure will be obtained by dividing the
total area n[A(S) ] into n = RC partitions after determining which lattice configuration will
accommodate best the n points into a rectangular configuration with associated interpoint spacing
parameter § (sce appendix A). Note that for commensurate (unit or nonunit) lattices, the
interpoint spacing parameter is related to the region in equation (8).

) 25 3B .. kb (k+1) & .. »X

. M 0+1)8
13

38

25

Figure 3. Special Case Lattice




Bers (1969, Vol. II, chapter 8, section 8, “Centroids of Plane Regions and Curves”™) gives
the following definitional formulas for determining the coordinate points (xi, yj) of the centroid
in region S:

k+1)8
x [fp(x) - gg(x)]dx
' 2k +1
(xy,yp:xy = kgﬂ_l)s -X 2+ ),

[fa(x) - gg(x)1dx

kd
&)

k+1)8
172 [fp(x) 2 - gp(x)?)dx

_2j+1)
&k+1)8 2

[f(x) - gp(x)}dx

(¥ = 22

5

Here, (x, yj) represents the rule for locating all and every density point (centroid) in the entire
XY area, given concisely as

b 39)=[8+ (- 18} (8- g
=[(x1, y1) (x2, Y1) (x3, Y1) s (%> Y1)
(xp y2b < (x> ¥2) s (%p> ¥} -0 (%R, YOI
={lar2, 812}, [3802, &2, (582, 802 .. [o(2r - 1y2, 802), (10)
(672,382}, ...,[8(2R - 1¥2,38/2]}, ...,

[62 +(k-1)8,&2+(j- 1)3), ..., [32R - 1)2, §2C- 1)2]},

1S kSR, 1SjsC.




The coordinate system of equation (10) i\pplies to unit lattices and commensurate nonunit
lattices. Figure 4 is an example of equation (10) applied to a 3 x 2 unit lattice (§ = 1 from
equation (A-5) in appendix A). Note that X/R= Y/C=p=q=58=VXY/RC = 1 because all unit
lattices are commensurate. The graph is plotted from equation (10) by xx =k - 0.5;
yji=j-05k=123;j=1.2).

5 25 35
Y 25
3/2 ) o ®
5
12/ e ® °
0
o 12 3/2 52 X

Figure 4. Example of Special Case PDI Graph (Unit Lattice)

Figure 5 is an example of a graph for a nonunit commensurate lattice with n = 15 points within
area of 40 ft x 24 ft. Note that X/R = Y/C =p = q =8 =vXY/RC = 8. Plot points are generated from
equation (10): xx =4+ 8(k - 1); Yj= 4+8G-1).
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Figure 5. Example of Special Case PDI Graph (Commensurate Nonunit Lattice)

GENERALIZED DISTANCE FUNCTION IN A LATTICE

Since the coordinate points in the PDI lattice can now be specified completely, the PDI
“exact” and “approximate” distance formulas can be derived (O’Brien, 1990b, 1991b). Here is
derived the generalized, Euclidean distance formula for any PDI lattice (nonunit lattice and
thereby the unit 1ziiice as a special case) and any nonuniform distribution. First shown is the
derivation for a lattice using the general case notation system. The derivation applies equally to
the special case by assuming commensurability.

Let any density point in the X-Y plane be called (xy, yj) and let a second distinct point be
called (xy,;, Y 2)- Then, from equation (6),

g yp = (p2+ (k- 15,92+ G- 13),
(11)

Cpai» Vjo ) = (P2 + (k+i- 18,92 +(G+7/-1)B) ,

1<k<R-1, 1sjscC-1,




2<k+i<R, 25j+/sC.

Bers (1969, Vol. I) shows that the classical Pythagorean distance formula for any two
points in a Cartesian plane can generally be derived from the integral calculus arc length formula,

given for our notation as

L= VT oPax. (12)

Xk

The quantity f(x) is the first derivative of the function f(x), taken to be a genéralized single-
valued relation for two points in a Euclidean X-Y plane specified by the first degree equation
f(x) = a + bx, for the slope intercept a and linear slope b.

Sincef' (x) = 9[_2(;&_)] =Dy(a +bx) =b, the constaht slope of the points in equation (11)

can be defined asb =Mj-=-&. Then,
Xk+i =Xk §

Xk i
L=I H 1+(9dev

Xk

=8Viz+ /2,

which is seen to be of the form for the standard bivariate Pythagorean theorem scaled by a
constant:

(13)

L=V (X4 - XK)2 + Yjas - Y2 - (14)

Bers (1969, Vol. I, p. 279) terms equation (12) the “length formula.” It may also be
viewed as an average -- the average length of one pair of points. The length (distance) between
any one pair of points in the uniform RC lattice can be generalized to an average among all
possible pairs of RC points since each point pair defines a simple linear function each of which
possesses a piecewise continuous first derivative. The average pair-to-pair distahce, summed
over all pairs of points, will be the average of all the line-to-line curves (total length), since the
connected graph defines a multiple-valued relation (Bers, 1969, Vol. I, page 279). That is, the
uniform average distance in the total lattice is

10




Y 4

g il , (15)
C(n,2)
where
Cr2)=DO___8@-1 422, (16)

2!(RC-2)! 2

is the combinatorial expression specifying the total number of nonredundant pairwise-connected
lines from n nodes and the exact summation index limits are given in equation (11). The uniform
lattice distance equation (15) can be further expressed in a more computational convenient form
as

d=35a, an
where 3 is given in appendix A andA is the unit lattice average distance, which has been
derived in O’Brien (1991a) as
R1 Gl
12'% C}: (R-i)(C-j)V2+}? +RCR? +C2-2)
i=1 =1 .

= s (18)
JRORC-1)

A=

where R is the number of horizontal points in each row of the unit lattice, C is the number of
vertical points in each column of the unit lattice, and RC is the total number of density points in
the unit lattice.

An accurate approximation to equation (18) exists when n is not small. This relation is
derived under the assumption that there is a continuous uniform distribution within a rectangular
plane. The objective is to find the average distance between any two randomly selected points of
a convex set. The approximation formula® (Santalo, 1976, formula 4.18, page 49) is as follows:

-, 2 | 2 .
- h GG E 5 fifeR Bel]] o

* The author gratefully acknowledges an anonymous referee of The American Mathematical Monthly for
suggesting equation (19) (in correspondence related to O'Brien, 1990c).
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where d = YR2 + C2 and In is the natural logarithm operator.

- Calculations have shown equation (19) to be a good approximation to equation (18). For
example, for n under 100, the maximum discrepancy is less than 10 percent. Equation (19) is an
interesting example where a continuous distribution relation is applied to a discrete distribution
to obtain an approximation to the latter. In the limiting case, as RC approaches infinity, the
difference between equations (18) and (19) approaches zero.

In conclusion, for any finite, discrete, uniform distribution with distance between any two
points 3, the generalized average Euclidean distance in any PDI lattice among all possible pairs
of RC points will bed = 8A or 5A" ~ d. If a unit lattice @ = 1), thend=AorA'= d. Selected
values of A calculated from equation (18) are given in appendix B for all RC configurations
fromRREC=282toR& C=100 & 100 (n = 10,000 density points).

GENERALIZED DISTANCE FUNCTION IN A NONLATTICE

Here, density points can fall anywhere within the X-Y geometric area, subject to
restrictions specified earlier. The average Euclidean distance is calculated by equation (15) from
known coordinate points as

.Z. N (x; - xp2 + @ - yj?

d Cal) . (20)

where (xj, yi, (xj, yj) i = 1,2, ..., n; j = 1,2, ..., n) denote the coordinate locations for the density
points (n > 1) within the rectangular study area X ® Y with arbitrary origin O. Equation (20) is
the form used for calculating the population density measure of observed density points (i.e.,
PDIgc, defined below in equation (29)).

An approximation to equation (20) is useful because exact (xi, yi) (xj, yj) coordinates
cannot always be obtained. Recently, O’Brien (1991b) derived an approximation PDI method by
assuming knowledge of the relative location of the density objects when (x;, yi), (x;j, y;) data were
unavailable.

If one assumes that the study area A = X B Y has been partitioned into n = RC rectangles,
each with subarea given by equation (3), then the following abbreviated calculation routines can
be derived.

12




Define a cell density measure,
Djx = nik /Ajk, 1)

where nj is the number of objects observed to be within each of the subareas
Ax=Am(G=12,.,Rk=12,..,0C), 0<njk S Ajx, 0D < 1. Then, define a cell
indicator variable I:

1 ifDx=0,

=0 ifDg=0. @

Let

R
m= Y f: I , nD<m<n, 23)

where D = n/A is obtained from equation (21) as an average cell density with weights spread

over all cells; i.e.,D = % % Dy n-! . The measure m represents the total number of RC
k=1 j=I1
partitions occupied by at least one object. In practice, nyy is taken as the smallest integer value.

Likewise, m is taken to be the largest integer value.

Hence, equation (17) can be redefined to give the following approximation to equation

(20):
d' =84, (24)
where
( 3> Dix e )
§ oip = | =1 1‘2 - (m;:g)  1s¥gsD? 25)

S'eff is obtained from equation (21) as an average cell density with weights spread over only the
m occupied cells. The limits of equation (24) follow immediately by substituting the lower and

upper limits of m given in equation (23); viz., ASd' SAYA/n. Noting that1 <8< YA/ (see
appendix A) and assuming, in practice, that 1 < &'es < 8, it then follows that

amax <d < amin , (26)

13




where dmin and dmax are, respectively, the lower and upper distance measures in the exact PDI
model (O’Brien, 1990b). The relationship of (26) translates directly into a proof of the bounds of
the approximate PDI measure (PDT ac; = YD/d = [DY/m J/4); i.c.. PDT acy) is bounded by the
PDIpmin and PDInax relations defined in O’Brien (1990b) and in equations (27) and (28) below.

ALTERNATIVE DISTANCE MODELS

Thus far, the distance function has been derived for a rectangular configuration of points
by assuming a rectangular exterior region. Mathematically, there is good reason for doing this
because a square or rectangle can be drawn around any closed curve (Steinhaus, 1969).

Occasionally, the environment of interest may be modeled by curved configurations such
as ellipses or circles, the latter being the easier to work with. Circular distributions have two
advantages. First, for regions nearly square, a circle offers a more compact concentration of
points, which may provide more realistic bounds on the density measure for highly cluttered
environments. Second, any number n of points (including prime numbers) can be placed
uniformly on a circle of radius r with linear point-to-point distance d = 2r sin(180/n). Based on
this chord length measure, the author recently constructed a PDI model for discrete spatial
density for circular distributions (O'Brien, 1992).

14




SELECTED PROOFS

PROOF THAT PDImin < PDIgct < PDImax

First, a statement of the relationships involved in this proof is given as follows:

. =1 [
Lower bound: PDIpin = V’; . (P2))
. = 1— n 28
Upper bound: PDIpax 2 V: . (28)
Actual PDI:  PpDI.., =1/, (29)
ot =5 VE

The terms n, A, A, and dae; (equivalent to equation (20)) are used here as defined in this report; 8
is defined in appendix A.

Now, to the proof. From the relationships of equations (27), (28), and (29), a formal
statement of the relationship to be proven is as follows:

1. /Ml [Mcl.[I
aVass—VaszVi (30)

dact

To prove that equation (30) is a true statement, three assumptions are required:

dact, 85, and A are measured in linear units of feet, (31)

521, (32)
dact < 8A. (33)

The first assumption (31) is self-explanatory. The second assumption (32) is deemed
reasonable because it amounts to saying that if persons are positioned uniformly the head-to-head
distance () is about 1 foot. Although (32) would not be a reasonable assumption for areal units

of, say, square miles, (32) is reasonable when the areal units are square feet. (See O’Brien,
1991f, for the finite “macro” PDI model when areal units are square miles.)

The third assumption (33) states that, for a given geometric area to be studied in a density
analysis, the actual clustering of the density points (i.e., people) in that area (with associated
density dact ) will not be greater than the maximum theoretical dispersion provided by the

15




relation 8A (equation (17)). The region outside SA is assumed to contain physical objects such as
furniture, equipment, etc., making it unlikely that density points will be observed in that region.
Empirical evidence from Monte Carlo simulations in O'Brien (1989) is cited in support of (33).
In effect, (33) assumes that the persons are maximally dispersed in accord with the relation 3A.
Figure 6 describes the essential meaning of (33).

Y
=’
A
L~
_—— _
5 ! _— 34
1
| F‘C‘
& —®
o
0
0 X

Figure 6. Intuitive Justification for Third Assumption

The formal proof of equation (30) can now be given in detail. The proof is presented in three
parts. The first part states

Fs

Simplifying and rearranging the terms of equation (34) gives the following relationship:

Tact (34)

dact < BA, (35)

which follows directly from (33).

16




The second part of the proof states that
1 1.0
dact Vaszvk- (36)
Simplifying and réamnging the terms of equation (36) gives the following relationship:
A < dag. | 37

From (33) the following relationship can be established:

dact
2 <9, (38)
from which it can be deduced that
A
e 5 @

Since, by (32), it follows that 1/8 < 1, then it can be deduced that A /dacy <1, from which it
follows thatA < dgey.

The third part of thr; proof asserts that
1, [Tl [E
ZVaszVi- (40)

The relationship between the lower and upper limits of equation (40) follows necessarily from
the proofs given for equations (34) and (36) by the transitivity property of relations. It can be
readily seen that equation (40) reduces algebraically to & 2 1, which follows directly from (32).
Thus, the statement of equation (30) has been shown to be true as derived from the stated
definitions and assumptions.

The proof that the approximate PDI formula is bounded by the minimum and maximum
bounds given in equations (27) and (28) follows from equation (26) and from the definition of
the approximate PDI measure.

17




PROOFS FOR Sy -
From O’Brien (1990b, equation(9)), S is defined as

a' .
Sr= @n

The objective is to show that deff 2 1. Since C_l%g_; 2 1, as proven from equation (36), equation

(41) follows.

The proof that §/5.¢ 2 1 is as follows:

By definition, eff = g%""; then, 5/3eff = ___8_9_ 2 1, which follows because it reduces to
t

8A 2 dyct, Which was established previously in (33).

Because the quantity Sesr is a “‘pure number” (i.e., it has no dimensions because they cancel
out as in the above definition), it provides a pure measure of relative change in population density.

The reader may also rote that in the approximation model 8'egr 2 1 and &8'egr 2 1
follows from the derived limits given in equation (25) and the relationship given in equation (26).
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SUMMARY

~ This report has presented derivations of various distance functions that relate to the
author's three-parameter square-root model for measuring discrete spatial density in finite
populations. The model, called the Population Density Index (PDI) model, was developed to
capture dynamic density relations among persons within a naturalistic environment. An “exact”
model and an “approximate” model were presented.

The derivations related a generalized Euclidean distance function to the-fundamental
measures in the model (PDIac¢, the approximation measure PDI'gct, their lower and upper
bounds, and the density rate indices 8¢ and &'og ). Coordinate systems were derived for plotting

graphs of the PDI lattices and calculating the distance measures.

Also derived was the algorithm required to select a conformal lattice and the average
uniform distance among the lattice points based on the number of density points to be analyzed
within the reference quadrilateral area.

Average Euclidean distance values (A) were presented for unit lattices up to a
100 x 100 matrix. Using these values, researchers will be able to compute lower and upper
bounds of the PDI measures for up to 10,000 density objects.

19/20
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_ APPENDIX A
SELECTING A UNIT LATTICE AND INTERPOINT DISTANCE PARAMETER

DERIVATION OF THE ALGORITHM

In this appendix, the algorithm is presented for (1) determining a unique finite, discrete,
conformal RC lattice and (2) computing the average interpoint distance among the RC points.

To begin, it is assumed that n (sample size) and A = X B Y (the outer rectangular
geometric area) are known. If n is a prime number (like 5 or 13 or 29), augment n by 1 before
determining the rectangular/square dimensions of the unit lattice. The derivation of the
algorithm for selecting an RC lattice is developed from concepts of number theory (Ore, 1967).
In particular, interest is centered on sets and subsets of composite numbers that can be expressed
as rectangular or square integers; i.e., positive (nonprime) integers that are two-integer products.

The value of n can be expressed in terms of the prime factors of the whole number:
r -
= o
ITr4. @

where P; represents the jth prime number and o is the number of occurrences of the jth prime
number of n. For example, composite 60 can be decomposed into P,*1P,"2P,*3=22x 3 x 5.
Next, it is desired to derive the total number of possible RC (n =R & C) product configurations
of n in order to create the set of RC configurations; the latter will be a subset of the former. This
number can be derived as follows.

Let t(n) represent the number of all possible configurations of a composite integer n. |
Then it can be shown that this quantity is obtained from equation (A-1) by

T
) =] ] (@ +1). (A-2)
j=1

For example, 60 can be partitioned into (2 +1)(1+1)? = 12 two-integer products.

Next, the set of the t(n) configurations is examined to select only those nontrivial and/or
nonredundant configurations. Let ®(RC) represent the total number of nonredundant and
nontrivial R # C configurations for composite n, t(n) > ®([RC). The trivial configurations are
those for which n =n x 1 or 1 x n, and the redundant configurations are the multiplicative,
commutative equivalents of RH C;i.e, REHC=CRR (R 2C) (e.g., 10 x4 =4 x 10). Then,

A-1




ome)= X2, (A-3)

where S =0 when n is a rectangular number, and S = 1 when n is a square number.* The set of
all such specified configurations is denoted P of size ®(RC) =m; P = {R1C;, RyC, ..., RG;, ...,
RunCm)s R; 2G;). For example, if n=50,then ®(RC)=[(3x2x2)-2+0]2=35;
P={30x2,20x3,15x4,12x 5, 10x 6}. Note that the trivial (60 x 1, 1 x 60) and redundant
commutative equivalent configurations (2 x 30, 3 x 20,4 x 15, 5 x 12, 6 x 10) have been
eliminated from P. Likewise, for n =100, ®(100) = ®(22x 52)=[(3x3)-2+1)]2=4;
P={50x2,25x4,20x 5, 10x 10}.

Selection of a unique RC lattice with interpoint distance parameter 8 is accomplished by
the following guidelines.

Select the R # C lattice configuration (usually one) with dimensions most commensurate
with the exterior X 8 Y dimensions; i.e., the one for which X/Y - R/C is a minimum absolute
difference (X 2 Y, R 2 C). Determine the uniform interpoint spacing parameter
3 = ¥A/n = YXY/RC as defined in O’Brien (1990b, equation (3)). Next, test for conformity of
the dimensions of the selected lattice to the study area dimensions by the quantities (R - 1)d and
-~ (C-1)3. If either of the R,C dimensions is nonconformal (i.e., R-1)d2Xor(C- 1) 2Y),
then conform the lattice dimensions by adjusting & by the relation & = min[X/(R - 1), Y/(C - 1)] -
0.1. Finally, in the rarest of instances, when commensurability is achieved simultaneously by
more than one lattice cbnﬁguration, the researcher should approximate 8 as above for each
configuration, and then the R # C configuration will be that associated with the maximum &
value. If plural maxima & occur, select the R B C configuration associated with the smallest
value of A, given in appendix B.

The symbolic specification of the above guidelines can be stated as follows. Because the
desired discrete R B C lattice must be unique, the selection mechanism requires a complex

* Equation (A-3) is not proven nor could a proof be found in the mathematical literature. Its correctness
seems intuitively obvious. For example, for a number to be square, it is necessary and sufficient that all exponents in

the prime factorization (equation (A-1)) be even (Ore, p. 42), which implies that 7(n) is odd, as is T(n) - 2, but adding
1 (S) makes ®(RC) even. Finally, dividing by 2 eliminates the rectangular duplicates in T(n) + S - 2. The same logic
applies to rectangular numbers, thus completing the proof outline.
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two-step procedure. First, the following commensurability relation is determined from the
dimensions of A and each element of the set P:

RyCy = min max (X,Y) max R;,C))] .
lSlsm”mmx,Y) min (R;,Cp)| o= A4

Then, based on equation (A-4) above and equation (4) in the main body of the icxt, dis
determined from one of the following four mutually exclusive and exhaustive conditions:

V3 . ifk=1landp>0andq>0 (A-5)
5= m[(%'ﬁz‘f)‘al] ifk=landp<Oorq<0 (A-6)
1?21 2Sk5m [( 1’ Cy- 1) 01]} ifk>1and/=1 (A-7)
2Isn:rslk [A R,Cal ifk>1and/>1 (A-8)

where p, q are defined in equation (4). In (A-5) through (A-8), & 2 1 by definition. Also, it may
be proven that 8 < YA/n based on equation (4) where it can be deduced that (R - 1) < X,

" (C- 1) <Y, and for commensurate lattices (8 < YA/, 6 = X/R = Y/C. This relationship places
.an upper bound on § that is important in t!:c proofs and derivations of the text.

Figure A-1 summarizes the algorithm tor the RC Littice selection and computation of d.
In summary, if k = 1, RgCy is the lattice selected from equation (A-4) and d is selected from
equation (A-S) or equation (A-6). Ifk > 1, & is selected from equation (A-7) and R 8 Cis
selected as the lattice associated with the maximum & in equation (A-7). Finally, if (A-7)
provides a plurality of 3 values, then (A-8) is used, which selects the R ,C / 2 s/<k) lattice
associated with the smallest A value. Appendix B contains the requiredz values computed to
five decimal places. Note that for a unit lattice, or commensurate nonunit lattice, k = 1 and
equation (A-5) computes the correct 8. Hansen et al. (1953, Vol. I) provides an interesting
discussion of commensurate nonunit lattices related to a square-root law for distances in the field
of discrete finite-population sampling theory when equation (A-5) applies.

Thus, equations (A-4) through (A-8) provide a unique, conforming lattice with associated
interpoint distance parameter 8. A table of prime numbers and factorizations of composite
numbers is an indispensable tool for implementing equation (A-4). See Lehmer (1941, 1961) for
extensive tables and Abramowitz and Stegun (1964) for abbreviated t.bles.




These calculations assure that the lengths of the R and C line segments of the nonunit
lattice, (R - 1) and (C - 1)5, containing human density points do not exceed the dimensions of
the study area. The utility of adjusting & (when so required) as recommended resides in plotting
minimum/maximum dispersions of the RC density points in the study area as given in equations
(6) and (10).
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Calculate AREA &
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Figure A-1. Flowchart for Determining R # C Unit Latticé and Interpoint Distance Parameter &
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NUMERICAL EXAMPLES

Three artificial examples are selected to demonstrate the procedures. A complete setup is
provided. The flowchart in figure A-1 is useful in tracing the decision logic.

In the first example, the data are as follows: n = 12, A = 25 x 25 ft2. It is obvious that
n = 12 provides two nontrivial, nonredundant choices (®(12) = 2); viz.,, R|C; =6x 2 or
R2C2 =4 x 3. Because X/Y =1, RyC2 =4 x 3 comes closest to satisfying equation (A-4).
Because k = 1, first compute § = 7.22 (from equation (A-5)); R,C is found to be conformal (each
row/column “fits” inside the outside 25 ft2 area in accord with equation (4)). Thus,R=4,C=3,
and 8 =7.22.

In the second example, n = 64 and A = 50 x 5 ft2. This example is one of those rare
possibilities. Forn =64, 1(64)=7, ®RC)=[7+1-2]2=3,and P=({32x2,16x 4, 8 x 8}.
Applying equation (A-4) shows that 32 x 2 and 16 x 4 arc equally commensurate (k > 1); i.e,,
[10 - 16 =]10 - 4. Thus, because k = 2 and /is undetermined, apply equation (A-7), giving 8=
max (1.57, 1.51) = 1.57(/ = 1). The configuration associated with the largest & value is
16 1 4. Thus, R = 16, C =4, and 8 = 1.57 for this data distribution.

As an example requiring equation (A-8) for determining R & C and d, consider the data:
A=80x16ft2,n=32,P={16x2, 8 x4}. Here, applying (A-4) to the above data distributions
produces|5 - 8 =|5 - 2 (i.c., k = 2), and (A-7) produces 8 = max {(5.23, 5.23)} (> 1), which is
clearly ambiguous. But min [A (16 x 2), A (8 x 4)] =min (5.59,3.27)=A (8 x 4). Thus,R R C
=8 K 4,and =5.23.

In general, the reader will note that (A-7) or (A-8) will be required for determining &
whenever the study area ratio X/Y is equal to the average of the ratios of two equally
commensurate lattices. The above examples bear out this relationship.




APPENDIX B
UNIT LATTICE AVERAGE EUCLIDEAN DISTANCE VALUES
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